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HTS and CNT materials for Next Generation Advanced 
Conductors. 

 Replacement technologies for copper and aluminum. 
 

 Y1Ba2Cu3Oy (YBCO) Coated Conductors 
 HTS Research Perspective:   
 HTS Industry Perspective:  

 

Part II – Carbon Nanotube Coated Conductors 

 Motivation and Development of CNT Conductors 
 Fabrication Process 
 Composite Wire Performance 

 
 Mesoscale Science and Advanced Conductor 

Development. 
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HTS and CNT conductors are potential energy-efficient 
replacements for conventional copper and aluminum wires. 

7-10% transmitted energy lost  

= 40 GW 
 

More power to Urban Centers 
Urban restrictions on substations 

Enivronmental Concerns:  
Contaminating and flammable 

transformer oil  
 

electricity 
delivery 

electricity 
use 

Electric motors ~ 25%  
of electricity use 

Lighting ~ 22%  
of electricity use 

Air conditioning ~ 17%  
of electricity use 

incandescent 
~ 5% efficient 

Solid state  
> 50% efficient 

Technology Replacement 
Lightweight, durable 

conductor for electric power 
systems in weight-sensitive 

applications 
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High Temperature Superconductors 
Zero Electrical Resistance… 
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Why HTS?  Replacement Conductor for 
Simplifying Transmission in Urban Areas 

HTS Cables Offer New Options to Siting Power Lines 
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Demonstration Cables:  Long Island Power Authority (LIPA) Project 

 Long Island Power Authority –Holbrook 
Substation 

 Electrical Characteristics 
 Design Voltage/Current –138 kV / 2400 A        

~ 574 MVA 
 Design Fault Current –51,000 A @ 12 line 

cycles (200 ms) 
 Physical Characteristics 

 Length ~ 600m-HTS Conductor Length  
 Hardware Deliverables 

 Three ~600 m Long Phase Conductors 
 Six 138kV Outdoor Terminations 
 Installation/Commissioning –Spring 2007 

 
 ≈ 99 miles of conductor for the 600 m cable 
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Current HTS Technology (2nd Generation) for Most Applications is 
based on Y1Ba2Cu3Oy (YBCO) Coated Conductors. 

 Why a Coated Conductor?    Grain-to-
Grain alignment is crucial for high 
inter-grain JC. 
 

 Solution: Epitaxial Film Deposition 
 Implications for wire: 

 Reliable, large-area epitaxial 
deposition processes for complex 
oxides. 

 Flexible, single-crystal-like 
substrates by the kilometer. 

Exponential decrease of Jc with 
increasing grain boundary angle is 
observed for most (but not all) YBCO 
grain boundaries. 

4 K 

Dimos, D., P. Chaudhari, et al. (1988). "Orientation 
Dependence of Grain-Boundary Critical Currents in 
YBa2Cu3O7-∂ Bicrystals." Physical Review Letters 61  
(2) pp. 219-222. 
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Coated Conductors are Highly-Engineered Composites 
 Two pathways to single-crystal like substrates by the kilometer. 
 All the layers in these templates are functionally important. 
 HTS layer is around 2% of the total cross sectional area. 

Rolling-Assisted Biaxially 
Textured Substrates  

(RABiTS) 

YBa2Cu3O7-x (1-3 µm)  

Ag (~ 1µm)  

Cu (50 - 75 µm)  

Ion-Beam-Assisted Deposition 
(IBAD) 

Bulk Textured Film Textured 
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Research 
Perspective: Limits 
of HTS Performance?  
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 Research:   
 PLD – Pulsed Laser Deposition 

 
 Industry:  

 MOD – Metal Organic 
Deposition 

 MOCVD – Metal Organic 
Chemical Vapor Deposition 

 Co-evaporation 
 

Many deposition processes have been adapted for depositing 
high-Jc YBCO films. 

Laminar 

YBCO 

Buffers 

Columnar 

Chemical Solution Deposition (ex situ) 
 Metal Organic Deposition (MOD) 

Physical Vapor Deposition (in situ) 

1 µm 

Pulsed Laser Deposition 

Ag 

YBCO 

Buffers 

Also columnar 
 MOCVD 
 Co-evaporation 

RABiTS Ni(W) 

IBAD YSZ 

Grain boundary 

Cross-Cutting:  All deposition processes have to 
produce specifically oriented films and nano-
engineered microstructures.  (random and 
correlated defects) 
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Pulsed Laser Deposition (PLD) is a powerful laboratory-
scale film process for complex oxides. 

 Near stoichiometric transfer of target composition to film. 
 Rapid evaluation of new stoichiometries. 
 Epitaxial YBCO films with high critical current densities. 
 Ability to tailor the film structure with target modifications. 

1/3 : 2/3 Target ratio 

Gd-123 + BaRuO3  
+ Y2O3 

Y-123 + BaRuO3  
+ Y2O3 

Holesinger et al, Advanced Materials 19, 1917-1920, 2007 

TS = 700°C- 850°C  

(2)  Target rotation: 3- 15 rpm 

P(O2) = 100 - 400 mtorr 

KrF excimer laser 
λ= 248nm   
(1) Rate 10 Hz 

(3)  Target laser track 
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High-quality epitaxial YBCO films have high, but anisotropic 
critical current densities.  

0 45 90
0.00

0.05

0.10

0.15

H//c H//ab

H = 5 T
PLD - Xtal STO

thickness = 1.55 µm

J c [
M

A/
cm

2 ]

Θ [deg]

c-axis correlated 
(dislocations, twins) 

Random pinning 

ab-planes  
correlated 

H || c H || ab 

JC Data and Analysis from Leonardo Civale 

 High self-field JC films are 
supported by an effective pinning 
microstructure (point defects). 
 

 Small defects modify the 
“anisotropy”, providing additional 
pinning centers (small secondary 
phases, dislocations, stacking 
faults.) 

Y-123 is anisotropic.  γ = BC2 (H||ab) / BC2 (H||c) 
    γ ≈ 5 

 

PLD Y-123 
JC = 4.1 MA/cm2 

Energetically favorable for the vortices to sit on defects 
or “normal” material.  Optimal size for these pinning 
defects is the coherence length ξ (≈1.5 nm). 
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Control of defect structures in research-grade films has led 
to IC values up to 1000 A/cm-width. 

0

1

2

3

4

5

6

7

0 1 2 3 4

 Thickness (mm)  

J c
 (

M
A

/c
m

2
)

YBCO trend
YBCO+BZO 2008
YBCO+BYNO
YBCO+BYXO
YBCO+BSO
YBCO+BCO
YBCO+BZO
other
A/cm-width 500
A/cm-width 1000

500 
A/cm-width 

1000 A/cm-width 

2007 

Cumulative Data: LANL Superconductivity Technology Center 

Film and JC Data from Matt Feldmann et al 

Additions to create small non-
superconducting phases. 
 
Focus on: 
Ba2YNbOy (BYNO)    
BaZrO3 or Ba2YZrOy  (BZO) 

(μm) 
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Ba2YNbO (BYNO)is a double-perovskite that 
self-assembles as nanorods in PVD films. 

 Segmented, but continuous rods with amorphous 
regions around “joints” and changes in tilt. 

(004) BYNO 

(202) BYNO 

(400) BYNO 

(004) BYNO 

(202) BYNO 

[010] BYNO || [010] YBCO 
(400) BYNO || (200) YBCO 
 

YBCO 

SrTiO3 
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Self-assembly of the BYNO nanorods is temperature dependent. 

730°C 

g = (006) 

810°C 

g = (006) 

Dark Field – Weak Beam Imaging 

 Properties of the film are very dependent upon 
the arrangement of the nanorods and other 
nanoscopic defects. 

Nanorods  

Nanorods and Nanoparticles  

0 45 90
0.0

5.0x105

1.0x106

1.5x106

730°C

810°C

J c
 (A

/c
m

2 )

Θ (degrees)

 

H = 1 T, 75 K 

H || c 

JCmin 
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Engineered Performance with Targeted Second Phase Additions: 
Combining c-axis and ab- correlated structures 

 BYNO nanorods grow 
parallel to the c-axis (c-axis 
correlated) 

 Y2O3 nanoparticles lie in 
planes along the ab-planes 
(ab- correlated) 

75.6 K, 1.0 T 
ADDITIONS LEVEL FIXED AT: 
YBCO + 10% 

Optimal composition ratio 
contains 3× as much Y2O3 
as BNO to form BYNO + 
Y2O3. 

 

0.88 MA/cm2 

0% BNO / 10% Y2O3  
2.5% BNO / 7.5% Y2O3  

5% BNO / 5% Y2O3  
7.5% BNO / 2.5% Y2O3  

10% BNO / 0% Y2O3  

H
 |

| 
c 

θ (°) “ Improved flux pinning in YBa2Cu3O7 with nanorods of the double-
perovskite Ba2YNbO6,” D.M. Feldmann, T.G. Holesinger, B. Maiorov, 
S.R. Foltyn, J.Y. Coulter, and I. Apodaca, Superconductor Science and 
Technology 23 095004 (2010) 
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Best results to date are from a 2 µm thick YBCO + BZO film. 

0

0.4

0.8

1.2

1.6

2

-20 0 20 40 60 80 100

Q (°)

J c
 (M

A/
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2 )-
--

   YBCO + 5 mol% BZO + 7.5 mol% Y2O3 

   t = 1.95 µm, Jc(sf) = 5.16 MA/cm2 

   Ic(sf) = 1006 A/cm 

  Ic(1T) = 234 A/cm (minimum) 

2 µm 

1 µm 

Multilayer 75.6 K, 1.0 T 

H
 |

| 
c 

Film Synthesis and Jc Data from Matt Feldmann 

θ (°) 
“1000 Acm-1 in a 2 µm thick YBa2Cu3O7-x film with BaZrO3 and Y2O3 
additions,” D.M. Feldmann, T.G. Holesinger, B. Maiorov, H Zhou, 
S.R. Foltyn, J.Y. Coulter, and I. Apodaca, Superconductor Science 
and Technology 23 115016 (2010). 

Jcmin = 1.2 MA/cm2 
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The high JC films have an ultra-fine defect structure with minimal 
grain boundary phases. 

 Screw-dislocation mediated growth 
 2-D image of a 3-D structure! 

 Grain boundary phases (Y2O3) are minimized in 
this sample.  

g = (006) 

Dark Field – Weak Beam 

Z-contrast 

G.B. G.B. 
Grain  
Center 

JC = 3.9 MA/cm2 (75K)  
IC = 900 A/cm-w, t = 2.3 µm 
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Nanorods and Nanodots:  An Optimized Two-Defect Pinning 
Structure for REBCO Films and Coated Conductors. 

 Y2O3 nano-particle layers 
 Tilted with respect to ab 

plane. 
 Symmetric about each 

grain’s center. 
 TEM imaging of strain within 

the film is associated with 
the Y2O3 nanoparticles. 

 
 Short, truncated BZO 

nanorods  
 Tilted relative to film normal;  
 Symmetric about each grain 

center. (splay) 
 

c-axis g = (006) 

“Synergetic combination of different types of defects to 
optimize pinning landscape using BaZrO3-doped YBa2Cu3O7,” 
Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., 
Dowden, P.C., Holesinger, T.G., Foltyn, S.R., Civale, L., 
Nature Materials 8 398-404 (2009). 
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Part I Summary – HTS Conductors 

 HTS wires are highly engineered composite materials. (HTS layer is only about 
2% of the cross section.) 

 
 For HTS wires to work at the km length scale…. 

 Alignment micron-sized grains for high inter-grain currents requiring single-
crystal-like substrates by the kilometer. 

 Nano-engineered defect structures for high intra-grain JC.  
 High-rate, robust manufacturing.  

 
 Trade-offs are made between the best film processes and those that can work 

in an industrial environment. 
 
 HTS wires are finally reaching the commercial stage with applications in grid 

security and reliability in city centers.   
 1986 – Bednorz and Mueller and cuprate superconductivity 
 2014 – ComEd / AMSC’s  Chicago “Resilient Electric Grid” project 
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Carbon Nanotube Coated Conductors 
Really Lightweight Wires… 
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Advanced Conductor Development for Today‘s Challenging 
Applications 
 CNT Coated Conductors: Development of a 

lightweight, high-conductivity wire 
technology based on carbon nanotubes. 

CNT Coated 
Conductors 

Initial Funding: Chevron /RPSEA for 
ultra-deep water oil recovery. 

Replacing the 19 miles of Cu 
wire and cables on the F-35 
joint strike fighter with CNT 
wire would save 1,935 lbs. 
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CNT Coated Conductors: Lightweight Wire Roadmap 

 Large-Scale Manufacturing: Solution Coating and Wire Drawing 
 Flexible coating process enabled with CNT solutions. 

 Range from full dissolution to suspended fibers. 
 Allows for control and manipulation of large quantities of CNTs. 

 High-pressure alignment and densification with wire drawing 

 Targets 
 Conductivity on par with or better than pure Cu forms. 
 1/3 to 1/4 the density of a pure copper wire. 
 High specific conductivity (> 2x Cu) 
 Targeted wire sizes: 32 – 10 AWG  
 High Strength, High thermal conductivity. 

 End Product:  A Base Material for wires and cables for a range of applications 
involving: lightweighting, energy efficiency, structural support, corrosion resistance, 
and thermal management. 
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CNTs for Advanced Conductor Development 

 Extraordinary electrical, mechanical and thermal properties. 

 Room temperature operation 

 Conductivity / Current Capacity of Individual CNTs are substantially better than 
copper. 
 Conductivities 1000 times higher than Cu. 
 Tensile strength up to 100 times greater than steel 
 Thermal conductivity up to 10 times greater than Cu. 

Issues for Development 
Need aligned, closely packed CNTs. 
Technology scale is 3 to 6 orders of magnitude larger than the 
individual CNTs. 
Technology has to be amenable to the production floor. 
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Nanotubes to Wires:  Manufacturing at the Mesoscale. 

 Question:  How do you take nanotubes and manufacture technology scale devices 
that are 3-6 orders of magnitude larger? 
 

 Approach: Develop an intermediate building block. 
 Carries the CNT alignment 
 Functionalized 
 Malleable for the assembly process 

nm > cm μm - cm 

Continuum of fiber sizes in solution 



28 University of New Mexico – Nov. 2015 Holesinger - Advanced Conductor Development 

Solution Deposition (Dip Coating) and Wire Drawing for CNT 
Composite Development. 
 Solutions: Not driving for full 

dissolution of individual CNTs. 
 Acid (Sulfuric) Based:   
 Water Based: Triton X / SDS / Dawn  

 Preference for sulfuric-based 
solutions.  
 Better control of fibers in solution 

 Base material: forest-grown 
multiwall CNTs 
 Long length (mm scale) 
 High-purity 

 

 Solution allows for addition of other 
materials. 
 SWNTs, DWNTs 
 Metal infiltration (particles / salts) 

 Mechanical bond between CNTs 
and wire former. 
 Abraded prior to coating 
 CNT green coat ≈ 1 to 2 mm thick. 
 Drawn in the wet state and dried ≈ 10 

to 90 μm. 
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Laboratory scale processing of CNT composite conductors. 
Nanoscale Technology Scale Mesoscale 

Fe 
Al2O3 

Si 

d ~ 5 – 25 nm 1 
- 4

 m
m

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

(k) 

0.1 - 2 cm 

Solution 

Deposition 

Co-Draw 
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Combination is needed to produce thick, dense, and aligned 
CNT coatings about a wire former. 

Nov 2012 

April 2013 

1 mm 

Nov 2012 

April 2013 

May 2013 

Solution deposition only 

Solution deposition plus wire drawing 

Optimized drawing with thicker coatings 
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Mechanical Bonding between CNTs and Cu 
 Use the wire drawing steps to embedded the CNTs 

into the abraded Cu. 

Abraded Cu wire former 

Copper (IACS) 
1.72 μΩ-cm 

5.81x107 S/m 
6.49x103 Sm2/kg 

R/L (Ω/cm) Core ρ (μΩ-cm) 

2.36E-03 1.80 

Abraded 28 AWG Cu wire 

R/L (Ω/cm) Core ρ (μΩ-cm) 

2.21E-03 1.78 

As-Received 28 AWG Cu wire 

Cu 

CNT 
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Electrical Measurements 

CNT Coat 

Cu Core 

I1R1 

I2R2 

1/RT = 1/R1 + 1/R2 

(AW-AC)*ρw*ρc 

(AW*ρc – AC*ρw) 
ρCNT = 

AW = x-sec area of wire1        AC = x-sec area of core1 

ρ W = measured resistivity of whole wire 
ρC = measured resistivity of bare substrate2 

 Parallel-resistor model to 
determine the resistivity of the 
CNT coatings. 
 Laser micrometer for 

dimensional measurements. 
 4-probe pressed contacts onto 

the CNT coating. 
 Measurement of the Cu core has to 

come after removal of CNT coating. 

Cu core / CNT coating removed 

CNT coated wire 

R/L       
(Ω/cm) 

Wire ρ    
(μΩ-cm) 

CNT ρ    
(μΩ-cm)  

Coating 
(μm) 

CNT     
% x-sec 

2.34E-03 2.46 13.1 32.4 27.0% 

R/L (Ω/cm) Core ρ (μΩ-cm) 

2.46E-03 1.89 

Cu Core CNTs Removed 
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Cross-sectional SEM analysis shows the 
aligned CNT structure within a high-
conductivity coating. 

Wire Specific σ 
(Sm2/kg) 

 
% of Cu 

7.0x103 108% 

5:1 Commercial DWNTs: 
LANL MWNTs 

CNT coated wire 

R/L       
(Ω/cm) 

Wire ρ    
(μΩ-cm) 

CNT ρ    
(μΩ-cm)  

Coating 
(μm) 

CNT     
% x-sec 

2.31E-03 2.17 5.5 26.3 28.1% 

R/L (Ω/cm) Core ρ (μΩ-cm) 

2.60E-03 1.76 

Cu Core CNTs Removed 

CNT Particulate 
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Summary of CNT Coating Performance 

 CNT coating performance is 
approaching Cu. 

 Additional optimization of the drawing 
and coating processes is needed. 
 Remove residual porosity and 

further improve alignment with 
the thicker coatings. 

 Limit number of current-limiting 
defects. 

 Likely need better 
functionalization between CNTs. 

Increasing 
 Porosity 
 Mis-alignment 
 Cracking 

10-6

10-5

0.0001

0 10 20 30 40 50 60 70

LANL CNT Coatings

C
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g 

R
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CNT Thickness (µm)

Cu

Al
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Summary of CNT Wire Performance 

 With increasing coating thickness, the 
overall composite resistivity increases. 
 

 For comparable behavior to Cu, obvious 
need to keep improving CNT coating 
performance. 

Wire Resistivity vs. CNT Thickness 

(28 AWG Cu Core) 

1.72 μΩ-cm 

2.78 μΩ-cm 

Wire ρ = 2.12 μΩ-cm; CNT coating ρ = 5.5 μΩ-cm    
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Calculations of composite density give us an idea of how close 
we are to achieving a light-weight wire. 

 Calculated density – 
Green curve 

 Measured density – 
Red diamonds 
 

 Have reached 
coatings of 90 
microns (gray area) 
 

 Wires with  < ½ the 
density of Cu. 

Metals 
 

Cu - 8.96 g/cm3 

 

Al - 2.70 g/cm3 
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Understanding Current Limiting Mechanisms to Improve 
Performance. 

a) Sheath failure during drawing 
b) Sheath failure during drawing 
c) Crack development during coating 
d) Particle induced cracking 
e) Embedded particles. 
f) Non-uniform coatings. 
g) Coating separation from substrate. 

(c, f, g) 

Focus on microscopy for understanding “good” or “bad” performance.  
 Structure-property correlations 
 Feedback loop for process modifications   
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There are variations in density along and across 
the CNT coatings. 

 Room for further improvement in the 
density of the coatings. 

 May be limitations due to wavy nature of 
the forest grown CNTs. 

SEM image of wire surface 

TEM cross-section 
of CNT coating 

TEM cross-section 
of CNT bundle 

SEM cross-
section of CNT 
forest 
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What would it take to obtain a CNT Coated Conductor with a specific 
conductivity of 2 x copper? 

 0.3 mm Cu core. 
 

 Calculate specific σ’s 
based on several 
CNT coating (ρ) 
performance levels. 
 

 For 2x specific σ 
relative to Cu? 
 ½ conductivity of 

Cu 
 200 micron coating 
 28  22 AWG 
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CNT Coated Conductors with Commercial Base-Material CNTs 

 CNT coating on 28 AWG Cu wire 
 Wire density: 5.3 g/cm3 

 CNT coating ρ:  46 μΩ-cm 
 

 Quick demonstration to show ability to 
use commercial sources for CNTs.  

 

Composite wire 
R/L       

(Ω/cm) 
Wire ρ    

(μΩ-cm) 
CNT ρ    

(μΩ-cm)  
Coating 

(μm) 
CNT     

% x-sec 

2.47E-03 2.57 46.1 28.7 29.1% 

R/L (Ω/cm) Wire ρ (μΩ-cm) 

2.51E-03 1.85 

Cu Core after CNTs removed 

Initial wires limited 
by non-uniformity in 
the coating 
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Electroplating / Cu incorporation 
 Initial work to demonstrate 

processes that may be needed for 
specific applications. 

 Cu incorporation with Cu-salt 
addition to solution plus anneal. 

 Cu electroplating to demonstrate 
continuous coating. 

Cu 

EP Cu 

CNT + Cu 

1 

Pt 

Cu 

Cu 

Z-contrast 

Cu 
Cu 
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Summary – Carbon Nanotube Coated Conductors 

 Highly-aligned, thick CNT coatings on Cu (and other wire 
formers) with industrially-scalable processes. 
 Solution deposition 
 Wire drawing  

 

 Alignment Across Scale:  Alignment of nm sized 
materials at the macroscale (mm). 
 CNT Forests 
 Extended Fibers in solution 
 Wire drawing to finish assembly 

 

 High Performance Wires. 
 Best result: 5.5 μΩ-cm 
 Most CNT coatings in range of 10 to 100 μΩ-cm. 
 Specific conductivities that now exceed Cu. 
 Focus on eliminating manufacturing defects. 

 

 Opportunity to further improve properties with better 
functionalization of the CNTs. 

Holesinger et al, PCT application and Paper in Preparation 2015. 
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Path Forward 

 Need to move to reel-to-reel continuous coating and wire drawing. 
 Uniformity 
 Application Testing 

 Final product form 
 Protective coatings 
 Insulation 

 Move out of laboratory 
 PCT filed; available for view 
 Work with Industrial partners to identify application pulls 
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Commonality in Advanced Conductor Development:  Mesoscale 
Science. 

 Imagine the ability to manufacture at the mesoscale…    
 … directed assembly of mesoscale structures that possess unique functionality… 
 … bottom-up design with nanoscale (nanoengineered) functional units producing 

next-generation technological innovation. 
 
This is the promise of mesoscale science. 

FROM QUANTA TO THE CONTINUUM: OPPORTUNITIES FOR 
MESOSCALE SCIENCE      
A Report from the Basic Energy Sciences Advisory Committee  
U.S. Department of Energy  September 2012 

Key Concept:  Conducting Research within the 
Context of Scalable Processing. 
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Mesoscale Science of Advanced Conductor Development 

Nanoengineered YBCO grain CNT Fiber in Solution Building Block 

Bottom Up Synthesis and Alignment of Mesoscale Structures 
Hetero Epitaxial Growth 

Single-Crystal like Substrates 
Grapho-Epitaxial CNT Synthesis 

Solution Deposition  &  Wire Drawing 

Mesoscale Building Block 

Fe 
Al2O3 Si 

TS = 700°C- 850°C  

(2)  Target rotation: 
3- 15 rpm 

P(O2) = 100 - 400 mtorr 

KrF excimer 
laser 
λ= 248nm 
   
(1) Rate 10 Hz 

(3)  Target laser 
track 

Continuum of fiber sizes in solution 
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Questions? 
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